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A CONDITIONAL PROPERTY OP ADAPTIVE ESTIMATORS

By William C. Parr

Institute of Statistics, Texas A&M University, Collage Station, Texas

- 
- SUMMARY

In adaptive estimation, it is often considered that an

- - estimator has made a mistake if the component estimator

chosen for use is not the most efficient for the distribution

sampled. Theoretical and simulation results point to a

fal1~cy in this line of thought. The Monte Carlo study involves

extension of the Princeton Swindle t~ distributions con-

ditional on a location— and scale—free statistic, and to the

uniform. The results give a partial explanation for the

sometimes surprising robutness of adaptive L—estiinators.

Keyvords~- Adaptive estimation; conditional reference sets; Monte Carlo

swindles; robustness -

1. INTRODUCTION

There has been a great deal of recent interest in the use of adaptive

estimators to achieve the goals of robust estimation. Hogg (1974) glvos

a broad perspective on the state of the art from one of the field’s

pioneers. Adaptive estimators may be roughly characterized as follows.

A “preliminary” statistic (}iogg ’s Q as defined below, the sample

kurtosis, or perhaps some combination of skewness and tailveight measures)
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is calculated from the data, and used to select an estimator T from a

class {T
~
, A c A). Typically, the preliminary statistic is a samp ie

measure of a population characteristic known to affect drastically the

relative behavior of the TA .

The motivation for our study of th. behavior of estimators conditional

on a preliminary statistic is best understood by means of an example.

Let the adaptive estimator T (for the point of symeetry of a sy~~.tric

population) be defined by

— 
f T( .lO) if Q < 2.0

~ T( .25) if Q > 2.0

where

median •

n— L ots]

n—2(nci ] i_ In~ l+l
X (i) 0 •c ~ c •5

T(ts) ” (n(a+.5)J+1

2((~~~ 3i]+1} ~~
(X(I) + X(~_1~1)) —.5 ( a C 0

midrnnge a — — .5 ,

X(~) (i — 1, ... , n) are the sample order statistics, and

Q.l t1Lt2~
.) — 1 (.O5)

— E(.5)

i~(a) and ~(a) being the average of the largest and smallest (ma) order

statistics respectively. Note that, for a c 0, T(a) — 4 {~(IaI)
+ t(IaI) . Q is thus a location-and scale—free tailveight
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- —



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3

measure . (Population values are 1.95, 2.58, and 3.30 for the unif orm,

normal, and double exponential, respectively.)

The usual presumption has bean that if one is sampling from an

extremely heavy—tailed distribution and observes a sample with Q < 2.0,

hence using T — T(.1O), a 102 tri .d mean instead of a 252 trim , an

error has been made. The following work demonstrates, however, that it

is quite possible that although

varcauchy (T(.lo)) > varc.uchy (T(s25))

L 

and also, in fact ,

Var
~~uchy(T(.lO))Q < 2.0) > VarCaUChY(T(.25)IQ c 2.0)

T(.25) may be much less inefficient with respect to T(.lO)

when sampling from the conditional distribution, given Q < 2.0. This would

agree with the view that samples from the Cauchy with Q C 2.0 are more

uniform— or normal—like than their unconditional counterparts.

- 
-

2. SOME THEORETICAL INSIGHTS

In this section we consider th. case where K is a location— and scaLe—

free statistic, T is an unbiased location estimator (i.e. T(a~ + hi]

aT(X] + b for a i~ 0), and the sampling is from a location family,

i.e. f8(x) • f(x  — 0) for all x c K. If a complete and sufficient

statistic for 0 exists, we let T
~5 denote the unbiased esUastor of 0 which

is a function of j t .

~ i ~
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Then,

Var(TfK) • Var(T — T
~. 

+ T IK)

• Var (T — T 5~K) + Var(T IIC)

• E{(T — T
~5
)2(K) + Var(T ) I- - .

by Basu’s theorem, since the distribution of T — T
~5 

is parameter free.

(Note that Basu’s theorem works for the conditiomU distributions because

and K are statistically independent , as are T
~. 

and T — Tcs•)

Thus , we see that

(i) If T T 5, i.e. if our estimator is a function of a

complete and sufficient statistic , then the conditional

varinnce (In (ac t the entire distrtbution) ~ T h~

same as the unconditional.

(ii) A reasonable measure of the extent the conditional

variance of T depends upon X would be

Var (E {(T — T ) 2 1K)]  •

and r would be made large by a dependenc. between K

and IT — 

~~~~ 
together with the possibility of large

values of ~T — T
~.

I.

Based upon these two considerations , we •xp.ct the conditional variances

to vary from the unconditional primarily f or estimators T which are

of low eff iciency and for conditioning variables K which truly reflect

characteristics which are related to the efficiency of T,

- -- . -~~ —- ~- - . —- - - -- - - -
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3. SDWLATION METHODS AND RESULTS

Several points regarding the Monte Carlo methods used in this study

are of interest. It is desired to estimate the variances of T(a) for

several values of a, at the normal, .73N(0,l) + .23N(0 ,9) , and uniform

distribut ions , conditional on observing Q in specified ranges, for samples

of size 20. (Note .7SN(0l) + .25N (O ,9) is not a true distribution, but

a pssudo—sample consisting of 15 observations from N(O,l) and S from N(O ,9).)

The first point is that, for those distributions wher, the Princeton

Swindle is applicable , th. extension to those distributions conditional on a

location- and scale—free statistic is imeediate. If K1 • Z1/Y1(i • 1, .. ., n)

where the are lid N(O,1) and the Y are such that PLY • 0) • 0

(1 • 1, ... , n), then a • EZ1Y~ /EY~
2 and b • ( {EZ~2 — (EZ

~
Yi)

2/ZYj2}/(n —

are , conditional upon !~ 
statistically independent of c • Cx — 1a)/b .

Therefore , if K is a location and scale free statistic, it is a function

of £ and thus independent of a and b , which yields

Var (TIK) • E (a2] + Var (T (c)IK)

by the usual manipulations. This., we will estimate the conditional

variance Var(TIK) by

M
Var(TIK) • E( a 2) + ~ T~(c1)1—1

where we have simulated the unconditional distribution N times of which

N satisfied the conditioning criterion . Arguments similar to those of

Gross (1973) and Simon (1976) d oostrate that this swindle can only

serve to reduce Monte Carlo variability For distributions representable

_ _ _ _  
_ _ _ _  
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as N(O,l)/Ind.p.ndent, vs will thus generate from the unconditional

distribution 10000 samples, estimating the various conditional quantities

desired based upon those of the 10000 samples meeting the criterion.

The Princeton Swindle has not, however , been extended to short—tailed

distributions. Nevertheless, an analogous variance reduction technique

is available for any location-scale family admitting a two—dimensional

complete and sufficient statistic (a,b), where a is a location statistic

(a(c1x + c21) — c1a(x) + c2, c1 ~ 0, — • C  C2 
C ~), and b is a scale

statistic (b(c1z + c21) — Ic 1Ib ( x) ,  for c1 ~ 0, all — .<  c2 C •). Under

these conditions, and with K as above ,

Var(TIK) — E(a 2) + E(b2] E(T2(c)IK] ,

which permits essentially the same procedure as when the Princeton Swindle

applied . Thus, in the case of sampling from a uniform distribution on

the interval (—1,1),

Var (TIK) . (n+l)(n+2) + (n9•1)(n4•2) E(T 2 ( c ) I K ]

ft should be noted that the savings due to the swindle in this case will -
be 0(4) (order of the theoretically calculated term), an order in n higher

than E(T2(c)IK] for most estimators. However, for near—efficient estimators,

.~Kpv c~ . , 1 Iy  thosr with EIT2(~)IK1 • O(,j~--)~, the gains w t11 he especia]ly

valuable for small n. In independent work, Seal (1974) has also extended

the Princeton Swindle to the case of a two—dimensional complete and suf-

ficient statistic (a,b) with a a location statistic and b a scale statistic ,

out not to the case of conditioning upon a location— and scale—free statistic.

: 
Normal pseudorandom variates were generated by means of the polar I

method, with a multiplicative congruential uniform generator used to obtain t

— ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~ ~~- -.
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pseudorandom uniforms. Tables 1, 2 • and 3 giv, estimated var ianoea for n • 20

of T(a) for a • — .5, — .4 , — .25, 0, .05 , .10, .25 , and .50 , conditional

Ofl Q C 2 0, 2 0 c Q < 2 6 , 2.6 ( Q, and uncondiuona1ly for the 11(0,]),

75N(0 ,1) + 2511(0,9),  and U (—l ,l) respectively These ranges correspond

roughly to the categories for Q used in T1 of Hogg(l974), the first ,

second and third categories containing the population values for the

uniform (1.95), normal (2.58), and double exponential (3.30) respectively.

The entries are n x (estimated variance), followed in parentheses by an

estimate of the standard error of these siaulat~a values. The bottom

row in each table gives the number of the 10000 samples falling into the

conditional or unconditional category.

(Tables 1, 2, and 3 about here)

Several points emerge as worthy of note fro. an examination of these

tables. First is that our suggestions from section 2 hold true. The

highly efficient estimators (trims with small a for N(0 l) , a near

.25 for .7511(0,1) + .25N(0 ,9), and a near — .3 for U(—l ,l)) exhibit only

small or no deviations of their conditional variances from their

unconditional variances. However, highly inefficient estimators (a near

— .3 for N(0,1) or .7311(0,1) + .23 11(0,9) , and a near .5 for U (—l,l))

deviate greatly in this regard For instance, the midrange (a — — .5),

while having an unconditional variance over 19 times that of T(.25)

for .75N(0,l)+ .25N(0 9), has th. same ratio approximately equal to 2.7
- conditional on Q C 2.0. Thus , usage of T(— .3) wherever Q C 2.0 would be -

not nearly as serious an error in this sampling situation as its uncon-

ditional b.havior would suggest. Similar observations hold for other

comparisons.

~~~~~~~~~~~~ ~ 
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A further use of these results (and, more generally speaking, this

sampling methodology) would be to assess the behavior of possible adaptive

estimators without extensive costly Monte Carlo studies. For instance,

for the estimator

T(— .5) Q < 2.0

T — T(0) 
. 

2.0 < Q < 2.6

T( .5) 2.6 C Q

(admittedly not a t erribly informed choice) we estimate the variance at

N (0 ,1) (all variances still multiplied by 20, the sample size) to be

Va r(T) — 10000 (1 578) + 1000 1.000) + :::: ~
(l. 372) 1.144 .

S imilarly , at .7511(0,1) + .2511(0,9) T would have estimated variance 2.283

and at U (—l ,l) it would have estimated variance .211. An analysis incorrectly

ignoring the conditional behavior (taking the same linear combination as above

but using the unconditional variances) would have estimated these three variances

as 1.287 , 2 .7 32 , and .176. Thus, we see that for the first two distributions,

an assessment based upon unconditional behavior drastically underrates

the adaptive estimator. The situation is,hovever, reversed for the

(admittedly extreme) uniform distribution. Thus we see that naive assessment

of adaptive estimator s may well seriously misestimate (generally

overestia.,te) their varianees.

4. SUMMARY AND CONCLUSIONS

Theoretical and Monte Carlo results are given to suggest that the

reason for the surprising robustness of adaptive estimators may lie in

the unsuspectedly good conditional behavior of their components. To

-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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facilitate efficient simulation, ariance reduction methods were extended

to the relevant conditional situations. The results provide a method for

assessing more accurately and efficiently the behavior of prospective

robust adaptive estimators.
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TABLE 1

Estimated Conditional Variances of T(a) when Sampling f rom N (0 ,l)

Q C 2.0 2.0 ~ Q ~ 2.6 2.6 ‘ Q Unconditional

Midrange — .5 1,578 (.025) 2.408 ( .024) 4 .096 (.067) 2.871 (.027)

— .4 1.411 (.019) 1.790 (.014) 2.167 (.027) 1.876 (.012)
— .25 1.158 (.007) 1.190 (.003) 1.180 (.004 ) 1.184 (.003)

Mean 0.0 1.000 (.000) 1.000 (.000) 1.000 (.000) 1.000 (.000)
.05 1.007 (.000) 1.017 (.000) 1.038 (.000) 1.023 (.000)
.10 1.026 (.001) 1.04 9 (.001) 1.073 (.002) 1.055 (.001)
.25 1.158 (.007) 1.190 (.003) 1.180 (.004) 1.184 (.003)

Median .50 1.621 (.027) 1.490 (.009) 1.372 (.009) 1.464 (.006)

# Repetitions 935 6648 2417 10,000

_ _ _ _  _ _
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TABLE 2

Estimated Conditional Variances of T(a)vhen
Sampling from .75N(O ,l) + .2511(0,9)

a Q < 2.0 2.0 < Q < 2 .6 2 .6 ( Q Unconditional

Midrange — .5 5.045 (.509) 13.474 (.387) 39.934 (.529) 34 .610 (.443)
— .4 4~812 (.501) 10.999 (.327) 20.929 (.277) 18.856 (.234)
— .25 3.530 (.350) 5.592 (.155) 6.616 (.080) 6.382 (.070)

Mean 0.0 2.334 (.139) 2 .992 (.056) 3.056 (.026) 3.034 (.023)
.05 2.192 (.115) 2.550 (.041) 2.253 (.015) 2.307 (.014)
.10 2.059 (.091) 2.221 (.030) 1.883 (.010) 1.948 (.010)
.25 1.879 (.063) 1.952 (.020) 1.766 (.007) 1.803 (.007)

Median .50 2.122 (.094) 2 .286 (.031) 2.070 (.012) 2.111 (.011)

# Repetitions 138 1864 7998 10,000

I
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TABLE 3

Estimated Conditional Variances of T(cs) when Sampling from U (—l ,l)

a Q C 2.0 2 .0  < Q c 2.6 2.6 C Q Unconditional

Midrange — .5 .087 (.000) .087 (.000) .087 (.000) .087 (.000)

— .4 .099 (.000) .122 (.001) .241 (.016) .108 (.001)

— .25 .157 (.001) .253 (.004) .482 (.044) .192 (.002)

Mean 0.0 .282 (.003) .434 (.008) .676 (.071) .336 (.003)
.05 ..~28 (.004) .516 (.010) .815 (.087) .395 (.004)

.10 .378 (.005) .591 (.012) .866 ( .094 ) .452 (.005)

.25 .553 (.007) .767 (.016) .979 (.109) .627 (.007)

Median .50 .844 (.012) .922 (.020) 1.086 (.132) .872 (.011)

# Repetitions 6641 3250 109 10,000

/
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